
©2020-2022 Cribl, Inc.

CRIBL NOTES

STREAM
CHEAT SHEET

on U.S. $FREE

 ©2020-2022 Cribl, Inc.Version 2.0

©2020-2022 Cribl, Inc.

Stream Cheat Sheet

Basic Concepts

Sources

Routes

Scaling and Sizing

Pipelines

Functions

Packs QuickConnect

Destinations

Cribl Stream can process data from various
metrics, logs, traces, and generic event sources,
including Splunk, HTTP, Elastic Beats, Kinesis,
Kafka, TCP JSON etc. Depending on the Source,
both push and pull methods are supported.

Routes evaluate incoming events against filter
expressions to find the appropriate Pipeline to
send them to. Routes are evaluated in order,
and a Route can be associated only with one
Pipeline and one Destination.

A series of Functions is called a Pipeline, and
the order in which they are executed matters.
Events are delivered to the beginning of a
Pipeline by a Route, and as they're processed
by a Function, they are passed onto the next
Function down the line. Events only move
forward, towards the end of the Pipeline and
eventually out of the system.

Collector Sources

Collector Sources are designed to ingest data
intermittently, rather than continuously. You
can use Collectors to dispatch on-demand (ad
hoc) collection tasks, which fetch or "replay"
(re-ingest) data from local or remote locations.
Collectors also support scheduled periodic
collection jobs that can make batch collection
of stored data more like continual processing of
streaming data. Supported Collectors include
(but are not limited to): Filesystem / NFS, Azure
Blob, Google Cloud Storage, S3 (including
MinIO), REST, and Splunk Search.

A Function is a piece of JavaScript code that
executes on an event, and it encapsulates the
smallest amount of processing that can happen
to that event. E.g., a Function can replace the
term foo with bar on each event. Another one
can hash bar, and yet another can add a field,
say, dc=jfk-42 to any event from host
us-nyc-42.cribl.io.

Cribl Stream can send data to various
Destinations, including Exabeam, Splunk,
SignalFx, Kafka, Elasticsearch, Kinesis,
InfluxDB, Snowflake, Databricks, Honeycomb,
Azure Blob Store, Azure EventHubs, TCP JSON,
Wavefront, and many others. Destinations can
be streaming (events are sent in real time) or
non-streaming (events are sent in batches).

Packs enable Cribl Stream administrators
and developers to pack up and share
complex configurations and workflows
across multiple Worker Groups, or across
organizations. Packs can contain everything
between a Source and a Destination: Routes
(Pack-level), Pipelines (Pack-level),
Functions (built-in and custom), Sample
data files, Knowledge objects (Lookups,
Parsers, Global Variables, Grok Patterns, and
Schemas). Wherever you can reference a
Pipeline, you can specify a Pack!

QuickConnect is a visual rapid-development
UI. With it, you can connect Cribl Stream
inputs (Sources) to outputs (Destinations)
through simple drag-and-drop. You can then
insert Pipelines or Packs into the
connections, to take advantage of Cribl
Stream’s full range of data-transformation
Functions. Or you can omit these processing
stages entirely, to send incoming data
directly to Destinations – with minimal
configuration fuss.

Expected resource utilization will be
proportional to how much overall processing is
occurring. For instance, a Function that adds a
static field will likely perform faster than one
that applies a regex to finding and replacing a
string. Cribl’s current sizing guidance is 400GB
thru/day/CPU. For example:

Input: 4TB/day
Outputs: 4TB/day to S3
 2TB/day to Splunk
Total thru: 10TB/day
Est. CPUs: 25 (10TB/400GB)

Version 2.0

©2020-2022 Cribl, Inc.

Basic Concepts (cont.)

Event Model

Filters and Value Expressions

Cribl.Cloud Deployments

Stream Cheat Sheet

When data volume is low, and/or the amount of processing is light, a single-instance deployment
may be su�icient. To accommodate higher volume, increased processing complexity, and increased
availability, Cribl Stream can be scaled up and out across multiple instances. This is known as a
distributed deployment. Distributed deployments are not limited to on-premises only or
Cribl.Cloud only; Stream is also capable of hybrid deployments.

The fast alternative to downloading and
self-hosting Cribl Stream so�ware is to launch
Cribl.Cloud. This SaaS version, whether free or
paid, places the Leader and the Worker
Nodes/Edge Nodes in Cribl.Cloud, where Cribl
assumes responsibility for managing the
infrastructure.

You can use JavaScript filters and other value
expressions to configure Stream’s Routes and
built-in Functions. Expressions are syntactical-
ly valid units of code that resolve to a value.
Conceptually, Stream supports two types of
expressions: Some assign a value to a field –
e.g., myAnswer=42. Others evaluate to a
value, – e.g., (Math.random() * 42). Filters
are expressions that must evaluate to either
true (or truthy) or false (or falsy). You can use
filters in Routes to select a subset of incoming
data flow, and in Functions to scope or narrow
down their applicability.

All data processing is based on discrete data
entities commonly known as events. An event
is generally defined as a collection of key/value
pairs (fields). Some Sources deliver discrete
events directly, while others might deliver
bytestreams that need to be broken up by
Event Breakers. The internal representation of a
Cribl Stream event looks like this:

{
 "_raw": "<body of non JSON parse-able
event>",
 "_time": "<timestamp in UNIX epoch
format>",
 "__inputId": "<Source of the event>",
 "__other1": "<Internal field1>",
 "__other2": "<Internal field2>",
 "__otherN": "<Internal fieldN>",
 "key1": "<value1>",
 "key2": "<value2>",
 "key3": "<value3>",
 "keyN": "<valueN>",
 "...": "..."
}

Fields that with start with a double underscore
are internal to Stream. For example, syslog
sources add both an ��inputId and a
��srcIpPort field to each event. Internal
fields can be used in a Pipeline, but are not
passed down to Destinations. If an event
cannot be JSON-parsed, all of its content will
be assigned to the _raw field. If a timestamp is
not configured, or cannot be extracted from an
event, Stream will assign the current time (in
UNIX epoch format) to _time.

Some simple examples:

Filter: Check if incoming events are from host foo
or filename ends in .log:

host��'foo' �� source.endsWith('.log')

Expression: Assign field sourcetype the value of
cisco:asa if string %ASA is in _raw, else leave it
as is.

/%ASA/.test(_raw) ? 'cisco:asa' :
sourcetype

Version 2.0

©2020-2022 Cribl, Inc.

Using Built-in Functions

Filtering Function Performance

Performance Tips

Stream Cheat Sheet

Stream ships with a growing collection of
highly configurable, out-of-the-box
Functions. Below, we list key built-in
Functions by purpose, followed by
available JavaScript methods and Cribl
expressions.

Create, remove, update, rename fields
Functions: Eval, Rename, Lookup, Regex
Extract, Grok

Find & Replace, including basic sed-like,
obfuscate, redact, hash etc.: Mask, Eval

Add GeoIP information to events: Lookup, GeoIP

Extract fields from structured and
unstructured events: Regex Extract, Parser

Extract and assign timestamps: Auto
Timestamp

Drop events: Drop, Regex Filter, Sampling,
Suppress, Dynamic Sampling

Sample events
(e.g., high volume, low value data):
Sampling, Dynamic Sampling

Suppress events
(e.g., remove duplicates etc.): Suppress

Convert JSON arrays or XML elements into own
events: Unroll, JSON Unroll, XML Unroll

Serialize events to CEF format
(send to various SIEMs): CEF Serializer

Serialize / change format
(e.g., convert JSON to CSV): Serialize

Flatten nested structures
(e.g., nested JSON): Flatten

Aggregate events in real-time
(i.e. statistical aggregations): Aggregations

Convert events to metrics format: Publish
Metrics.

The filters in your Cribl Stream Routes and
Pipelines are like the gasoline in your car’s
engine. The better the fuel, the better the
engine runs. The better your Stream filters, the
faster your Routes and Pipelines can process
observability data. Observability at scale
requires careful attention to minor
performance items, such as the choice of the
function in your filter. A good rule of thumb is:
regex matching functions such as match, test,
search will typically take more CPU to process
than string matching functions such as
indexOf, includes, and startsWith, etc.

JSON events are received as strings in Cribl
Stream. In order to improve performance (and
reduce event size) try adding an Eval function
to the beginning of your pipeline where Name
is _raw and Value Expression is set to
JSON.parse(_raw). This will quickly convert
the JSON back from a string (faster than using a
parser) AND slightly shrink the overall event!

Start On Boot (systemd)

JSON.parse(_raw)

Multi-line logs and multi-value arrays can be
tough to deal with. Navigate the logs easier by
adding an Eval to the beginning of your pipeline
where Name is _raw and Value Expression is
set to _raw.split('\n'). This will quickly cut
up the multi-line log file for easy parsing later
on. You can even reference specific lines in the
log by using _raw.split('\n')[i] and
substituting i with the desired line!

_raw.split

When using C.LookupRegex be wary of empty
new lines. Regex lookups return true when a file
has a dangling new line since these are treated as
a wildcard. So remember: When making lookup
files -- don't leave an empty line at the end!

Regex Lookups

Cribl Stream can be configured to start at boot
time with systemd. To do this, run the
boot-start command. Make sure you first
create a user you want to specify to run Cribl
Stream.

Example: To run Cribl Stream on boot as
existing user cribl use:
sudo $CRIBL_HOME/bin/cribl
boot-start enable -m systemd -u
cribl

The above will install a unit file named
cribl.service, and will start Cribl Stream at
boot time as user cribl.

Note: A -configDir option can be used to
specify where to install the unit file. If not
specified, this location defaults to
/etc/systemd/system/.*

It may be necessary to change ownership for
the Cribl Stream installation
([sudo] chown -R cribl $CRIBL_HOME).
Finally, enable Stream to ensure that the

service starts on system boot ([sudo]
systemctl enable cribl)

Available systemctl commands are: systemctl
[start|stop|restart|status] cribl

Version 2.0

©2020-2022 Cribl, Inc.

Commonly Used Functions

ExamplesFunction

Eval

DESCRIPTION FIELD NAME VALUE EXPRESSION

source

status

location

url

private

myField

classname

'mySource'

code��200 ? 'success' : status

`${city}, ${state}`

url.replace(/\.com/, '.net')

C.Net.isPrivate('10.10.2.0') ?
'yes' : 'no'

['aa', 'bb', 'cc','dd']

classname.toLowerCase()

Add a field called source and set it to mySource

Change status to success if code is 200

Set location field to city, state

Replace .com with .net in url

Set private to yes if myip is on private range

Create an array field called myField

Convert value of classname to lowercase

ExamplesFunction

Mask

DESCRIPTION MATCH REGEX REPLACE EXPRESSION

phonenumber=\d+

^#.*$
/m

sensitive

This event is generated[\s\S]+$

(\d+\.\d+\.\d+\.)\d+

(creditcard=)(\d+)

''

''

'REDACTED'

'DESCRIPTION REMOVED'

`${g1}xxx`

`${g1}${C.Mask.md5(g2)}`

Remove phone numbers from events

Remove comments (lines that start with #)

Replace sensitive with REDACTED

Remove description from wineventlogs

Redact last octet of an IPv4 address

MD5 hash a credit card number

Stream Cheat Sheet

ExamplesFunction

Regex
Extract

Sample Event: 2020-04-20 16:20:00 input=tcpjsonin rate=42 host=555.example.com region=us-east state=nj city=edgewater

input=(?<input>\w+)\s+rate=(?<rate>\d+)

(?<_NAME_0>[^\s]+)=(?<_VALUE_0>[^\s]+)

Extract only input and rate fields

Extract all KV pairs in the event

Cribl Stream ships with a Regex Library that contains a set of pre-built common regex patterns.
Example: IPv4 Address - (?<!\d)(?:(?:[01]?\d\d?|2[0-4]\d|25[0-5])\.){3}(?:[01]?\d\d?|2[0-4]\d|25[0-5])(?!\d)

Version 2.0

©2020-2022 Cribl, Inc.

Commonly Used Functions (cont.)

ExamplesFunction

Drop

DESCRIPTION FILTER EXPRESSION

_raw.includes('DEBUG')

_raw.includes('DEBUG') �� host��'myHost'

Math.random() > 0.5

_raw.length < 42

Drop all DEBUG events

Drop all DEBUG events from host myhost

Drop 50% of all events (poor man’s sampler)

Drop all events with length less than 42 bytes

Stream Cheat Sheet

Custom Code Function

DESCRIPTION EXPRESSION

��e['field-name']

��e['test'] = 'Hello, Goats!'

��e['cpus_filtered'] = ��e['cpus'].fil-
ter(entry �� entry.value �� 3)

��e['cpus_reduce'] = ��e['cpus'].re-
duce((accumulator, entry) �� accumula-
tor + entry.value, 0)

��e['cpus_some'] = ��e['cpus'].some(en-
try �� entry.value �� 3)

��e['cpus_every'] = ��e['cpus'].every-
(entry �� entry.value �� 10)

Accessing
Fields in an
Event

Eval a Field

JSON Filter

Reduce

Some

Every

In other words, think of your code executing in a context like this:
function(��e: Event) {
 �� your code here
}

Create a field test with the value Hello, Goats!

Filter the cpus array inside the event, only keep values greater
than or equal to 3 and place in a new field cpu_filtered

Summarize data across an array, with a returned accumulator
value (cpus_reduce: 11.8)

cpus_some set to true because there is at least one object with
a value greater than or equal to 3

cpus_every is false, because not all values in the event are
greater than or equal to 10

If you need to operate on data in a way that
can't be accomplished with Cribl Stream's
out-of-the-box Functions, the Code Function
enables you to encapsulate your own JavaS-
cript code. This Function is available in Cribl
Stream 3.1+, and imposes some restrictions for
security reasons.

Considerations
 Generally speaking, anything forbidden in
JavaScript strict mode is forbidden in the
context of the Code Function. Specifically, the
following are not allowed: console, eval,
uneval, Function (constructor), Promises,
setTimeout, setInterval, global,

Example Event Data
Below is an example event that will be
referenced in the Function Examples table.
You can try out the below functions by pasting
the cpus array from the example event into
an Eval function at the top of a pipeline with
a field titled cpus.

NOTES

Function Examples

{
 "cpus": [
 {"number": 1, "name": "CPU1", "value": 2.3},
 {"number": 2, "name": "CPU2", "value": 3.1},
 {"number": 3, "name": "CPU3", "value": 5.1},
 {"number": 4, "name": "CPU4", "value": 1.3}
],
 "arch": "Intel x64"
}

globalThis, and window. All JavaScript loops
and statements are allowed: for, for-of,
while, do-while, switch, etc.

The Code Function watches user-defined
functions to detect infinite loops that would
cause processing to hang. To limit the number
of iterations allowed per instance of your Code
Function, adjust the Advanced Settings
>Maximum number of iterations option. This
defaults to `5,000`; the maximum number
allowed is `10,000`. Once the limit is reached,
the Code Function will stop processing
whatever is a�er the statement that exhausted
the allowed maximum.

Version 2.0

©2020-2022 Cribl, Inc.

Useful JS methods:

String

Number

Math

.startsWith(), .endsWith(), .trim(), .trimEnd(), .trimStart(), .substring(), .split(), .indexOf(), .length, etc.

.isInteger(), .toFixed(), .parseFloat(), .toString(), etc.

Math.E, Math.LN10, Math.abs(), Math.sin(), Math.log(), Math.max(), Math.pow(), Math.sqrt(), etc.

Cribl Expressions:

Decode

Encode

Inline Lookup

Mask

Net

Text

Time

Others

C.Decode.base64(), C.Decode.gzip(), C.Decode.hex(), C.Decode.uri()

C.Encode.base64(), C.Encode.gzip(), C.Encode.hex(), C.Encode.uri()

C.Lookup(), C.LookupCIDR(), C.LookupRegex()

C.Mask.isCC(), C.Mask.luhn(), C.Mask.md5(), C.Mask.sha1(), C.Mask.random(), etc.

C.Net.cidrMatch(), C.Net.ipv6Normalize(), C.Net.isPrivate()

C.Text.entropy(), C.Text.hashCode(), C.Text.isASCII(), C.Text.isUTF8(), C.Text.relativeEntropy()

C.Time.strftime(), C.Time.strptime(), C.Time.timestampFinder()

C.vars, C.env, C.Misc.xxx(), C.version etc.

Stream Cheat Sheet

Function Examples (cont.)

DESCRIPTION EXPRESSION NOTES

��e['cpus'] = ��e['cpus'].map(entry ��
Object.assign(entry, {'name':
entry.name.toLowerCase()}))

debug("this is the event " +
`${JSON.stringify(��e)}`);

Transform a
Specific Field

Debugging

Each cpus member will have its name field transformed to
lowercase.

Adds message this is the event to events viewed in the
Preview Log. Regular logs will also show this message if the
function log level is set to debug.

Version 2.0

